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QUESTION 1 (15 points) 
 
Sur un oscillateur élémentaire, avec raideur 𝑘, masse 𝑚 et coefficient d’amortissement 𝑐, on 
applique une force périodique, ayant la formule : 

𝑓(𝑡) = 4𝐹0cos(𝜔𝑡) sin
2(𝜔𝑡) 

i) Décomposer la force 𝒇(𝒕) selon ses harmoniques, en calculant 𝑭𝒏 et 𝝍𝒏. ..................... (3 pts) 

ii) Calculer les harmoniques du déplacement, avec 𝑿𝒏 et 𝝋𝒏, en fonction des paramètres du 

système. ................................................................................................................................................. (5 pts) 

iii) Calculer la valeur de la fréquence 𝝎 pour laquelle la valeur du premier harmonique du 

déplacement 𝑿𝟏 est égale à la valeur du troisième harmonique divisé par neuf (
𝑿𝟑

𝟗
).(7 pts) 

 
Formules d’aide : 

sin(𝐴) sin(𝐵) =
cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵)

2
 sin(𝐴) cos(𝐵) =

sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)

2
 

cos(𝐴) cos(𝐵) =
cos(𝐴 + 𝐵) + cos(𝐴 − 𝐵)

2
 cos(𝐴) sin(𝐵) =

sin(𝐴 + 𝐵) − sin(𝐴 − 𝐵)

2
 

Solution 

(i)  
𝑓(𝑡) = 4𝐹0cos(𝜔𝑡) sin

2(𝜔𝑡) = 𝐹0(cos(𝜔𝑡) − cos(3𝜔𝑡)) 
𝐹1 = 𝐹3 = 𝐹0; 𝜓1 = 0;𝜓3 = 𝜋 

 

(ii) Pour calculer maintenant les harmoniques du déplacement on utilise les formules 
développées dans le cours, mais en faisant la substitution des paramètres calculés 
dans la partie précèdent. : 

𝑋1 =
1

𝑘

1

√(1 − 𝛽2)2 + (2𝜂𝛽)2
 tan(𝜑1) =

2𝜂𝛽

1 − 𝛽2
 

𝑋3 =
1

𝑘

1

√(1 − 9𝛽2)2 + (6𝜂𝛽)2
 tan(𝜑3) =

6𝜂𝛽

1 − 9𝛽2
 

 

(iii)  
1

𝑘

1

√(1 − 9𝛽2)2 + (6𝜂𝛽)2
=
1

9𝑘

1

√(1 − 𝛽2)2 + (2𝜂𝛽)2
 

(1 − 𝛽2)2 + (2𝜂𝛽)2 =
1

81
((1 − 9𝛽2)2 + (6𝜂𝛽)2) 

1 − 2𝛽2 + 𝛽4 + 4𝜂2𝛽2 =
1

81
−
2𝛽2

9
+ 𝛽4 +

4

9
𝜂2𝛽2 → 𝛽2 (−2 +

2

9
+ (4 −

4

9
) 𝜂2) = −

80

81
 

𝛽2 =
80

81

1

(
16
9 −

32
9 𝜂

2)
=

5

9(1 − 2𝜂2)
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QUESTION 2 (10 points) 
Le système dans la Figure 2.1.a reçoit des vibrations externes à deux fréquences : 𝜔𝑒𝑥𝑡,1

2 = 0.9𝜔0
2  et 

𝜔𝑒𝑥𝑡,2
2 = 1.1𝜔0

2 , où 𝜔0  est la pulsation propre du système original. On veut limiter l’amplitude de 

vibration du système avec un amortisseur de Frahm en version conservative (Figure 2.1.b) avec les 
conditions suivantes : la pulsation propre de l’oscillateur secondaire est la même que celle de 
l’oscillateur principal, l’amplitude du système final est 40 fois plus petite que l’amplitude du système 
original (Figure 2.1.a). Calculer : 

i) Le rapport entre les masses 𝒎𝟐/𝒎𝟎. 
ii) L’amplitude de la masse secondaire par rapport à l’amplitude du système original. 

 
 

 

Figure 2.1 | Schémas pour les 2 systèmes. 

 

Solution 

 

(i)  
Pulsation propre de chaque résonateur sont égales : 𝛼 = 1. 

𝑋1,𝑜𝑟𝑖𝑔 =
1

1 − 𝛽2
𝑋1,𝑠 

𝑋1,𝐹𝑟𝑎ℎ𝑚 =
(𝛽2 − 1)

(𝜀𝛽2 − (𝛽2 − 1)2)
𝑋1,𝑠 

𝑋1,𝐹𝑟𝑎ℎ𝑚
𝑋1,𝑜𝑟𝑖𝑔

=
(𝛽2 − 1)2

𝜀𝛽2 − (𝛽2 − 1)2
=

1

𝜀𝛽2

(𝛽2 − 1)2
− 1

≤
1

40
 

𝑃𝑜𝑢𝑟 𝛽2 = 0.9 → 41 ≤
𝜀0.9

(0.1)2
→ 𝜖 ≥

0.41

0.9
≥ 0.455 

𝑃𝑜𝑢𝑟 𝛽2 = 1.1 → 41 ≤
𝜀1.1

(0.1)2
→ 𝜖 ≥

0.41

1.1
≥ 0.372 

(ii)  
𝑋2
2

𝑋1,𝑜𝑟𝑖𝑔
2 =

(1 − 𝛽2)

𝜀𝛽2 − (𝛽2 − 1)2
=
1

4
 

  

𝑘0 𝑚0

𝑘0 𝑚0

𝑘2
𝑚2(a) (b)
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QUESTION 3 (20 points) 

Dans le système sans gravité de la Figure 3.1 on a une barre de masse 𝑚 et rigidité infinie, et 
deux masses ponctuelles 2𝑚 et 𝑚. Les structures sont reliées par des ressorts de rigidité 𝑘 et 
2𝑘. Si l’on considère les coordonnées dessinées dans la Figure 3.1 : 

i) Calculer les positions d’équilibre 𝒙𝟏,𝟎, 𝒙𝟐,𝟎, et 𝒙𝟑,𝟎 si 𝑭𝟏(𝒕) = 𝑭𝟏 ........................................ (3 pts) 

ii) Écrire les équations de mouvement du système .................................................................... (7 pts) 

iii) Calculer la matrice de rigidité, de masse, et d’amortissement. ......................................... (3 pts) 

iv) Calculer le vecteur de « force » ou d’excitation sur les coordonnées du système ...... (5 pts) 

v) Est-ce que le système satisfait la condition de Caughey ? .................................................... (2 pts) 

 

Figure 3.1 | Schéma du système. 

 

Solution 

(i)  

𝑚

3
𝑥1̈ =

𝐹1
2
− 𝑘𝑥1 −

𝑘 (
𝑥1
2 − 𝑥2)

2
 

2𝑚𝑥2̈ = 𝑘 (
𝑥1
2
− 𝑥2) + 2𝑘(𝑥3 − 𝑥2) 

𝑚𝑥3̈ = 𝐹1 − 2𝑘(𝑥3 − 𝑥2) 
En statique : 

0 =
𝐹1
2
− 𝑘𝑥1 +

𝐹1
2
→ 𝑥1 =

𝐹1
𝑘

 

𝐹1 = −𝑘 (
𝑥1
2
− 𝑥2) → 𝑥2 =

3𝐹1
2𝑘

 

𝐹1 = 2𝑘(𝑥3 − 𝑥2) → 𝑥3 =
5𝐹1
4𝑘

 

 

(ii)  
𝑚

3
𝑥1̈ +

5

4
𝑘𝑥1 −

𝑘

2
𝑥2 =

𝐹1
2

 

2𝑚𝑥2̈ −
𝑘

2
𝑥1 + 3𝑘𝑥2 − 2𝑘𝑥3 = 0 

𝑚𝑥3̈ − 2𝑘𝑥2 + 2𝑘𝑥3 = 𝐹1 
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(iii)  

𝑀 = (

𝑚

3
0 0

0 2𝑚 0
0 0 𝑚

) ;    𝐾 =

(

 
 

5

4
𝑘 −

𝑘

2
0

−
𝑘

2
3𝑘 −2𝑘

0 −2𝑘 2𝑘 )

 
 
; 𝐶 = 0 𝑐𝑎𝑟 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑓 

 

(iv)  

𝐹 = (

𝐹1
2
0
𝐹1

) 

 

(v) Système conservatif est toujours Caughey. 
  



Mécanique Vibratoire  Page 5 

QUESTION 4 (25 points) 
Le système de la Figure 4.1.a se compose d’une barre sans masse de rigidité en flexion 𝐸𝐼 et longueur 𝐿, 
et deux balles avec masses 𝑚0. 

i) Calculer la matrice de flexibilité et la matrice des masses du système. ......................... (5 pts) 

ii) Combien des modes propres possède ce système ? ............................................................... (2 pts) 

iii) Calculer la matrice de rigidité du système. ............................................................................... (3 pts) 

iv) Déterminer les pulsations propres. ............................................................................................. (5 pts) 

v) Déterminer les vecteurs propres. ................................................................................................ (5 pts) 

vi) Si le système perd sa symétrie et la distribution des masses se trouve comme sur la Figure 

4.1.b, calculer (approx) les nouvelles pulsations propres du système. .......................... (5 pts) 

 

 

Figure 4.1 | Schéma des systèmes. 

 

Solution 

 

(i)  

𝛼 = (
𝛼11 𝛼12
𝛼12 𝛼22

) 

𝛼11 =
𝑤(𝑑𝑒 𝑚1)

𝐹(𝑠𝑢𝑟 𝑚1)
=

𝐿3

64𝐸𝐼
; 𝛼12 =

𝑤(𝑑𝑒 𝑚2)

𝐹(𝑠𝑢𝑟 𝑚1)
=

𝐿3

192𝐸𝐼
; 𝛼22 = 𝛼11 𝑝𝑎𝑟 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑒 

 

𝛼 =
𝐿3

192𝐸𝐼
(
3 1
1 3

) 

 

𝑀 = 𝑚0 (
1 0
0 1

) 

 
 

(ii) 2 modes propres 
 

(iii)  

𝐾 = 𝛼−1 =
24𝐸𝐼

𝐿3
(
3 −1
−1 3

) 

 

(iv) Matrice noyeau : 

𝐴 = 𝑀−1𝐾 =
24𝐸𝐼

𝐿3𝑚0
(
3 −1
−1 3

) = 𝜆0 (
3 −1
−1 3

) 

  

(a)

𝑚0 𝑚0𝐸𝐼

𝐿/4 𝐿/2 𝐿/4

(b)

1.1𝑚0 0.9𝑚0𝐸𝐼

𝐿/4 𝐿/2 𝐿/4
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Valeurs propres :  

det(𝐴 − 𝜆𝐼) = 0 =det ((
3𝜆0 − 𝜆 −𝜆0
−𝜆0 3𝜆0 − 𝜆

)) = (3𝜆0 − 𝜆)
2 − 𝜆0

2 = 0 

3𝜆0 − 𝜆 = ±𝜆0 → 𝜆1 = 2𝜆0; 𝜆2 = 4𝜆0 
 

𝜔1
2 =

48𝐸𝐼

𝐿3𝑚0
;  𝜔2

2 =
96𝐸𝐼

𝐿3𝑚0
 

 

(v) Vecteurs propres : 
𝐴 · 𝑣𝑖⃗⃗⃗  = 𝜆𝑖 · 𝑣𝑖⃗⃗⃗   

𝜆0 (
3 −1
−1 3

) (
𝑎
𝑏
) = 2𝜆0 (

𝑎
𝑏
) → 3𝑎 − 𝑏 = 2𝑎 → 𝑎 = 𝑏 → 𝑣1⃗⃗⃗⃗ = (

1
1
) 

𝜆0 (
3 −1
−1 3

) (
𝑎
𝑏
) = 4𝜆0 (

𝑎
𝑏
) → 3𝑎 − 𝑏 = 4𝑎 → 𝑎 = −𝑏 → 𝑣2⃗⃗⃗⃗ = (

1
−1
) 

 

(vi) Méthode de Rayleigh : 
 

𝜔1,𝑛𝑒𝑤
2 =

𝑣1⃗⃗⃗⃗ 
𝑇
𝐾𝑣1⃗⃗⃗⃗ 

𝑣1⃗⃗⃗⃗ 
𝑇
𝑀𝑣1⃗⃗⃗⃗ 

= 𝜆0

(1 1) (
3 −1
−1 3

) (
1
1
)

(1 1) (
1.1 0
0 0.9

) (
1
1
)
= 𝜆0

(1 1) (
2
2
)

(1 1) (
1.1
0.9
)
= 𝜆0

4

2
= 𝜔1,𝑜𝑙𝑑

2  

𝜔2,𝑛𝑒𝑤
2 =

𝑣2⃗⃗⃗⃗ 
𝑇
𝐾𝑣2⃗⃗⃗⃗ 

𝑣2⃗⃗⃗⃗ 
𝑇
𝑀𝑣2⃗⃗⃗⃗ 

= 𝜆0

(1 −1) (
3 −1
−1 3

) (
1
−1
)

(1 −1) (
1.1 0
0 0.9

) (
1
−1
)
= 𝜆0

(1 −1) (
4
−4
)

(1 −1) (
1.1
−0.9

)
= 𝜆0

8

2
= 𝜔2,𝑜𝑙𝑑

2  
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QUESTION 5 (30 points) 
Le système de la Figure 5.1 se compose de 3 masses et 6 ressorts. 

i) Combien de degrés de liberté trouve-t-on dans le système ? ............................................. (2 pts) 

ii) Calculer la matrice de rigidité et la matrice des masses du système .............................. (5 pts) 

iii) Déterminer les pulsations propres .............................................................................................. (5 pts) 

iv) Déterminer les vecteurs propres. ................................................................................................ (5 pts) 

v) Si l’on tape avec un marteau sur la masse centrale avec une force 𝑭(𝒕) = 𝑭𝟎𝜹(𝒕), calculer 

la force effective sur chaque mode normal de vibration ..................................................... (3 pts) 

vi) Calculer le mouvement de chaque mode normal par rapport au temps ........................ (6 pts) 

vii) Calculer le mouvement du système en coordonnées réelles (physiques). .................... (4 pts) 

  

 

Figure 5.1 | Schéma du système, avec les 3 masses et les 6 ressorts. 

 

Solution 

(i) 3 DDL 
 

(ii)  

𝐾 = (

4𝑘0 −𝑘0 0
−𝑘0 5𝑘0 −𝑘0
0 −𝑘0 4𝑘0

) ;𝑀 = (

2𝑚0 0 0
0 4𝑚0 0
0 0 2𝑚0

) 

(iii) Matrice noyeau : 

𝐴 = 𝑀−1𝐾 =
𝑘0
4𝑚0

(
2 0 0
0 1 0
0 0 2

)(
4 −1 0
−1 5 −1
0 −1 4

) =
𝑘0
4𝑚0

(
8 −2 0
−1 5 −1
0 −2 8

) 

 

det(𝐴 − 𝜆𝐼) = 0 = det((

𝜆08 − 𝜆 −𝜆0 0
−2𝜆0 5𝜆0 − 𝜆 −2𝜆0
0 −𝜆0 8𝜆0 − 𝜆

)) = (8𝜆0 − 𝜆)
2(5𝜆0 − 𝜆) − 4𝜆0

4(8𝜆0 − 𝜆) 

(8𝜆0 − 𝜆) = 0 

(8𝜆0 − 𝜆)(5𝜆0 − 𝜆) − 4𝜆0
4 = 36𝜆0

2 − 13𝜆0𝜆 + 𝜆
2 = 0 → 𝜆 =

13𝜆0 ±√169 − 144𝜆0
2

 

→ {
𝜆 =

1

2
(13 + √25)𝜆0 = 9𝜆0

𝜆 =
1

2
(13 − √25)𝜆0 = 4𝜆0

 

𝜔1
2 =

𝑘0
𝑚0
; 𝜔2

2 = 2
𝑘0
𝑚0
; 𝜔3

2 =
𝑘0
𝑚0
(
9

4
)  

3𝑘0 2𝑚0 𝑘0 4𝑚0 𝑘0 2𝑚0 3𝑘0

2𝑘0 𝑘0
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(iv) Vecteurs propres : 
𝐴 · 𝑣𝑖⃗⃗⃗  = 𝜆𝑖 · 𝑣𝑖⃗⃗⃗   

𝐴(
𝑎
𝑏
𝑐
) =

𝑘0
4𝑚0

(
8 −2 0
−1 5 −1
0 −2 8

)(
𝑎
𝑏
𝑐
) =

𝑘0
𝑚0
(
𝑎
𝑏
𝑐
) →

8𝑎 − 2𝑏 = 4𝑎
−2𝑏 + 8𝑐 = 4𝑐

→ 𝑣1⃗⃗⃗⃗ = (
1
2
1
) 

 

𝐴(
𝑎
𝑏
𝑐
) =

𝑘0
4𝑚0

(
8 −2 0
−1 5 −1
0 −2 8

)(
𝑎
𝑏
𝑐
) =

𝑘0
𝑚0
2(
𝑎
𝑏
𝑐
) →

8𝑎 − 2𝑏 = 8𝑎
−𝑎 + 5𝑏 − 𝑐 = 8𝑏

→ 𝑣2⃗⃗⃗⃗ = (
1
0
−1
) 

 

𝐴(
𝑎
𝑏
𝑐
) =

𝑘0
4𝑚0

(
8 −2 0
−1 5 −1
0 −2 8

)(
𝑎
𝑏
𝑐
) =

𝑘0
𝑚0

9

4
(
𝑎
𝑏
𝑐
) →

8𝑎 − 2𝑏 = 9𝑎
−2𝑏 + 8𝑐 = 9𝑐

→ 𝑣3⃗⃗⃗⃗ = (
1
−0.5
1
) 

 
Matrice B : 

𝑩 = (
1 1 1
2 0 −0.5
1 −1 1

) 

 

(v) Force modale 

𝑓 = (
0

𝐹0𝛿(0)
0

) → 𝑓𝑚𝑜𝑑𝑒𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑩𝑻𝑓 = (
1 2 1
1 0 −1
1 −0.5 1

)(
0

𝐹0𝛿(0)
0

) = 𝐹0𝛿(0) (
2
0
−0.5

) 

 

(vi) Mouvement modale : 
Matrice de masses : 

𝑴𝟎 = 𝑩𝑻𝑴𝑩 = (
1 2 1
1 0 −1
1 −0.5 1

)(

2𝑚0 0 0
0 4𝑚0 0
0 0 2𝑚0

)(
1 1 1
2 0 −0.5
1 −1 1

) = 𝑚0 (
20 0 0
0 4 0
0 0 5

) 

Mode 1 :  

𝑞1(𝑡) =
1

𝑚1
0𝜔01

(∫ 𝑓1
0(𝑡 − 𝜏) sin(𝜔01𝜏) 𝑑𝜏

𝑡

0

) =
2𝐹0

𝑚1
0𝜔01

sin(𝜔01𝑡) =
𝐹0

10𝑚0𝜔0
sin(𝜔0𝑡) 

Mode 2 :  
𝑞2(𝑡) = 0 

Mode 3 :  

𝑞3(𝑡) =
1

𝑚3
0𝜔03

(∫ 𝑓3
0(𝑡 − 𝜏) sin(𝜔03𝜏) 𝑑𝜏

𝑡

0

) = −
𝐹0

10𝑚0𝜔03
sin(𝜔03𝑡) = −

𝐹0
15𝑚0𝜔0

sin (
3

2
𝜔0𝑡) 

 

(vii) Mouvement reel : 

𝑥 =∑ 𝑣 𝑖𝑞𝑖(𝑡)
𝑛

𝑖=1
=

𝐹0
10𝑚0𝜔0

(

 
 
 
sin(𝜔0𝑡) −

2

3
sin (

3

2
𝜔0𝑡)

2 sin(𝜔0𝑡) +
1

3
sin (

3

2
𝜔0𝑡)

sin(𝜔0𝑡) −
2

3
sin (

3

2
𝜔0𝑡) )

 
 
 

 


